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ABSTRACT 

Recent work on integral equivalence of Hadamard matrices and block designs 
is generalized in two directions. We first determine the two greatest invariants 
under integral equivalence of the incidence matrix of a symmetric balanced 
incomplete block design. This enables us to write down all the invariants in 
the case where k -- 2 is square-free. Some other results on the sequence of in- 
variants are presented. Secondly we consider the existence of inequivalent 
Hadamard matrices under integral equivalence. We show that if there is a 
skew-Hadamard matrix of order 8m then there are two inequivalent Hada- 
mard matrices of order 16m, that and there are precisely eleven inequivalent 
Hadamard matrices of order 32. 

1. W e  assume the s t anda rd  def ini t ions  o f  an  H a d a m a r d  ma t r ix  as a square  

( 1 , -  1) ma t r ix  whose rows ( and  consequent ly  whose  c o l u m n s ) a r e  m u t u a l l y  

o r thogona l ,  and  o f  a s k e w - H a d a m a r d  ma t r ix  as an H a d a m a r d  ma t r ix  o f  the  

fo rm I + S,  where  S is skew. A n  H a d a m a r d  ma t r ix  necessar i ly  has  o rde r  1, 2, or  

a mul t ip le  o f  4. 

Two in tegra l  mat r ices  A and  B are  ( in tegra l ly)  equiva len t  i f  there  exist  in teger  

mat r ices  P and  Q of  de t e rminan t s  ___ 1 which  sat isfy 

A = PBQ.  

I f  A has  r ank  r then  A de te rmines  a un ique  set o f  posi t ive  integers ax, a2, "", a,, 

the  ( in tegra l  equivalence)  invar iants  o f  A, such tha t  al d iv ides  at+ 1 for  i = 1 , 2 , . . . ,  

r - 1, and  such tha t  A is equ iva len t  to the canonica l  d i agona l  ma t r ix  (Smith  

n o r m a l  form)  

D = d i a g  (a~,a2, . . . ,ar ,  O,.. .O); 
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two matrices are equivalent if and only if they have the same set of invariants. 

(These results can be found in various standard texts.) 

In particular, if A is an Hadamard matrix of  order n, the invariant sequence 

has the property 

alan_t+ 1 = n ;  

al = 1, and the next t invariants equal 2 where 

t => [ log~ (n - 1)] + 1 

(see [5, 6, 7]). From this we can find an upper bound on the number of inequivalent 

Hadamard matrices of a given order. 

In this paper we extend the known results in two directions. In Section 2 we 

consider the equivalence invariants of  the incidence matrix of  a symmetric balanced 

incomplete block design, as suggested by Newman [5], and results like those 

above are obtained. In the rest of the paper we discuss the number ofinequivalent  

Hadamard matrices" we prove in Section 3 that there are at least two inequivalent 

Hadamard matrices of  order 16m when there is a skew-Hadamard matrix of  

order 8m, and in Section 4 that there are precisely 11 Hadamard matrices of order 

32. (The latter result was conjectured in [7].) We use the fact, reported in [1], 

that if A and B are Hadamard matrices of  order n then 

is an Hadamard matrix of order 2n. 

The most natural equivalence relation to use in discussing Hadamard matrices 

is Hadamard equivalence, under which two matrices are considered equivalent 

if one can be obtained from the other by a sequence of row interchanges, column 

interchanges, row negations and column negations. Inequivalent matrices are 

Hadamard-inequivalent, but the converse does not hold (see [7]); therefore our 

results give l o w e r  bounds on the number of Hadamard-inequivalent matrices. 

Unless otherwise specified, we follow the notation of  [7]. 

2. Define A to be the incidence matrix of a symmetric balanced incomplete 

block design with parameters (v,k,2), where k > 2, and write a 1, a2 ,  . . . , a v  for 

the integral equivalence invariants of A and D for the canonical matrix of A. 

We w r i t e n = k - 2 .  

We prove the following propositions: 
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THEOREM 1. The  f irs t  [log2v'] + 1 invariants  of  A equal  1 and the last two 

are n and nk (k ,2 )  -1.  I f  n is square-free the invariants  are* 

1 (v - 1)/2 t imes 

(k, 2) once 

n (v - 3) /2 t imes 

nk(k ,  2) -  1 once. 

THEOREM 2. I f  the s consecutive invariants  (s > 3) s tar t ing f r o m  a i are 

equal,  then the s - 2  consecutive invariants  ending at av+ ~ are each equal to 

na~ 1 

We need the fol lowing lemma.  

LEMMA 1. Suppose L is a v × v ma t r i x  over a Eucl idean domain  E and y 

is a member  o f  E. Wr i te  ll, 12,... Iv f o r  the invariants  of  L and m 1, m z , ' " ,  mo 

fo r  the invariants  of  M = L + yJ .  Then  

l ~ _ l l m  i i = 2 , 3 , . . . , v ;  

mi_ 1 ] 1 i i = 2 ,3 , . . . , v .  

PROOF. The typical i x i submatr ix  of  M has the fo rm X + y J, where X is an 

i x i submatr ix  of  L. Write  Xj  for X with the j t h  co lumn replaced by y~. Then  

i 

(1) I X + YJ[ = Ixl  + z Ix l + z 
j = l  

where T is a sum of  de terminants  with two columns yei, and so equals zero .  Ex- 

pand ing  [X j] by its j t h  co lumn we obta in  y t imes a sum of  de te rminants  o f  

(i - 1) x (i - t )  submatr ices  of  L. So t¢_~ divides each te rm on  the r ight -hand 

side of  (1). Therefore  

(2) l i-  1 [ ml i = 2, 3, -.., v. 

Similarly, since L = M + ( -  y)J,  

(3) m,-1 [1,. 

The adjoint  o f  A is 

n (°- 3)/Z(kAr - 2J)  

[3,p.25"], so B = k A r - 2 J  satisfies 

* This canonical form was found in [3,5] for the case (k, 2) = 1. 
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A B  = knl .  

I f  P and Q are unimodular matrices such that P A Q  = D, then 

Q - 1 B p - 1  = knD -1 

which is necessarily the canonical matrix of B with its entries in reverse order. 

(It is diagonal, and each diagonal entry divides each earlier one.) So the invariants 

bl, b2, ' . . ,  by of B satisfy 

(4)] biao-i+ 1 = kn. 

The non-zero entries in B equal n or 2, so bl is the greatest common divisor 

(n, 2) = (k, 2), and 

(5) av = nk(k,  2)-  1 

The invariants of  kA  r are ka l, ka2, ..., kao, so from (1) and (2) 

(6) kai_l[b~ 2 _< i < v, 

(7) bi-  1 I kai 2 < i <_ v. 

Suppose a i = ai+ 1 . . . . .  ai+~_i, where s => 3. Then b~-i+l = bo-i . . . .  

= bo_~_s+ 2 = nka~ -1, by (4). From (6) and (7) 

kay-i] nkaf -1,  

nka[-1 I ]('av-i-s+ 3' 

and since 

av-l-s+ 3 ] av-i 

equality must hold throughout, that is 

a v _ i _ s +  3 = a v _ i _ s +  4 : . . .  = a v _  ~ = / l a - 1 ~  

which proves Theorem 2. 

We know [7, Theorem 3] that A has at least [log2v] + 1 invariants equal to 1. 

Suppose v => 4. Then al = a2 = a3 = 1, so a~_ l = n. In the (all trivial) cases where 

v < 4 this is also true. So we have the first part of Theorem 1 ; if n is square-free 

the rest of Theorem 1 is easy to prove. 

It is worth observing that the conditions derived here are certainly not suf- 

ficient. For  example, the Theorems would allow four possible invariant sequen- 

ces for a (16,6,2) design: the first a invariants equal 1, 16 - 2a equal 2 ,  a - 1 

equal 4 and one equals 12, where a - 5, 6, 7 and 8. The possible (16, 6, 2) designs 
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are exhibited in [2], and on testing we find that only the cases a = 6 and a = 7 

occur.  

3. L~MMA 2. I f  there is a s kew-Hadamard  matr ix  o f  order n then there is a 

s kew-Hadamard  matr ix  o f  order 2n with invariants 

1 once 

2 n - 1 times 

n n - 1 times 

2n once. 

PROOF. The Theorem is easily proven when n = 1 or 2, so put n = 4m. Suppose 

A is a skew-Hadamard matrix with canonical diagonal matrix D; suppose P and Q 

are unimodular integral matrices such that 

Then 

D = PAQ.  

Q - 1 A T p - 1  = n D  -1, 

and nD -1 is the matrix D with the order of  its entries reversed [5]. For  conven- 

ience write 

D = (1) G 2 C @ ( 4 m ) ;  

C is a diagonal integral matrix of  order n - 2. 

Consider the matrix 

K = _ A  T AT 

which is skew-Hadamard of order 2n. K is equivalent to 

P A Q  

= Q- I (A  + AT)Q 

(o 0 
= 2 n D _ l )  

using the fact that A + 

(AA) 
_ A  r A T 

o 1 
2 Q -  1ATp-  1 

0 Q p - 1  

A r =  21. This last matrix is 
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I 1 
2C 

2 

I 

n 1 
2n nC 1 1 

Subtract twice row 1 from row n + 1; subtract column 2n from column n; then 

we can reorder the columns and rows to obtain 

2 n @ \2-- i---E~--( / .  

L 2n 

Every entry of C divides )n,  so ½nC -1 is integral. So the second direct summand 

is integrally equivalent to 

(,c) Co) C01 
0 I I nC - t  \ I 0 = 0 2! 

and  the invariants of  K are as required. 

LEM~A 3. I f  there is an I tadamard matrix of order n = 8m, then there is 

an Hadamard matrix of  order 2n with at least 12m - 1 invariants divisible by 4. 

PROOF. I f  A is Hadamard  of order n and has canonical diagonal matrix D, then 

H =  - A  A 

is Hadamard  of order 2n and is equivalent to the diagonal matrix 

D @2D. 

Since n = 8m, the last 4m invariants of A are divisible by 4. Every entry of  2D 

except the first is divisible by 4. So D @ 2D has at least 12m - 1 entries divisible 

by 4. Even if D @ 2D is not in canonical form, it is easy to deduce that  D @ 2D 

(and consequently H) has at least 12m - 1 invariants divisible by 4. 

THEOREM 3. I f  there is a skew-Hadamard matrix of order 8m then there 

exists a pair of inequivalent Hadamard matrices of order 16m. 
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PROOF. Lemmas 2 and 3. 

463 

4. The restrictions in Section 1 imply that the invariants of an Hadamard 

matrix of order 32 are 

1 once 

2 a times 

4 ( 1 5 -  a) times 

8 ( 1 5 -  a) times 

16 a times 

32 once 

and that 5 < a <_ 15. We shall say a matrix with the invariants shown is " o f  

class a " ;  we shall now construct Hadamard matrices of order 32 in all eleven 
possible classes, thus proving 

THEOREM 4. There are precisely eleven inequivalent Hadamard matrices of 

order 32. 

In Section 4 of [7] we calculated the invariants of some Hadamard matrices of  

order a power of 2 by generating functions. In particular, if A is Hadamard of 

order 16 with co invariants equal to 2 and if H2 is Hadamard of order 2, the 

direct product 

H 2 x A = - A  A 

has exactly ~o + 1 invariants equal to 2. So the existence of  16 x 16 Hadamard 

matrices with 4, 5, 6 and 7 invariants equal to 2 (exhibited in [7]) implies the 

existence of 32 x 32 Hadamard matrices of classes 5, 6, 7 and 8. There is a skew- 

Hadamard matrix of order 16, so by Lemma 2 class 15 exists. 

An Hadamard matrix of order 16 can be constructed from a symmetric balanced 

incomplete block design with parameters (15,7, 3): first construct a matrix with 

(i ,j)  entries 1 if treatment j belongs to block i and - 1 elsewhere; then add on a 

first row and column with every entry 1. The (15,7, 3)-designs have been found 

by Nandi [4], and are also listed in [1]. Write A for the 16 x 16 Hadamard 

matrix constructed from Nandi's design (a2a'z), and B for the matrix con- 

structed from Nandi 's  (ala'l) 1 after applying a permutation ~ to the blocks. 

Then consider the matrix 
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when zc = (1) H is of class 9, 

when n = (1,3) H is of class 10, 

when 7r = (1,3,4) H is of class 11, 

when zc = (2, 7,12,13) H is of class 12, 

when n = ( 3 , 4 , 5 , 6 , 7 )  H is of class 13, 

when n = ( 2 , 3 , 4 , 5 , 6 , 7 )  H is of class 14. 

Therefore, examples of  all classes can be found. (These results were found in a 

computer  test of  various 32 x 32 Hadamard  matrices). 

I t  should be observed that these results could be used to strengthen the lower 

bounds found in [7] on the number ofinequivalent Hadamard  matrices of  order a 

power of 2. 
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