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ABSTRACT

Recent work on integral equivalence of Hadamard matrices and block designs
is generalized in two directions. We first determine the two greatest invariants
under integral equivalence of the incidence matrix of a symmetric balanced
incomplete block design. This enables us to write down all the invariants in
the case where k — 1 is square-free. Some other results on the sequence of in-
variants are presented. Secondly we consider the existence of inequivalent
Hadamard matrices under integral equivalence. We show that if there is a
skew-Hadamard matrix of order 8m then there are two inequivalent Hada-
mard matrices of order 16m, that and there are precisely eleven inequivalent
Hadamard matrices of order 32.

1. We assume the standard definitions of an Hadamard matrix as a square
(1, — 1) matrix whose rows (and consequently whose columns) are mutually
orthogonal, and of a skew-Hadamard matrix as an Hadamard matrix of the
form I + S, where S is skew. An Hadamard matrix necessarily has order 1,2, or
a multiple of 4.

Two integral matrices 4 and B are (integrally) equivalent if there exist integer
matrices P and Q of determinants + 1 which satisfy

A= PBQ.

If A has rank r then 4 determines a unique set of positive integers a,, a,,--*,4,,
the (integral equivalence) invariants of 4, such that g; dividesa;,, for i = 1,2, ..,
r — 1, and such that A4 is equivalent to the canonical diagonal matrix (Smith

normal form)
D = diag (ay, a3, a,,0, - 0);
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two matrices are equivalent if and only if they have the same set of invariants.
(These results can be found in various standard texts.)

In particular, if A is an Hadamard matrix of order n, the invariant sequence
has the property

Adp—i+1 =1,
a,; = 1, and the next ¢ invariants equal 2 where
t2 [log,(n — 1)} + 1

(see[5,6,7]). From this we can find an upper bound on the number of inequivalent
Hadamard matrices of a given order.

In this paper we extend the known results in two directions. In Section 2 we
consider the equivalence invariants of the incidence matrix of a symmetric balanced
incomplete block design, as suggested by Newman [5], and results like those
above are obtained. In the rest of the paper we discuss the number of inequivalent
Hadamard matrices: we prove in Section 3 that there are at least two inequivalent
Hadamard matrices of order 16m when there is a skew-Hadamard matrix of
order 8m, and in Section 4 that there are precisely 11 Hadamard matrices of order
32. (The latter result was conjectured in [7].) We use the fact, reported in [1]
that if 4 and B are Hadamard matrices of order n then

(2 )
—A B
is an Hadamard matrix of order 2n.

The most natural equivalence relation to use in discussing Hadamard matrices
is Hadamard equivalence, under which two matrices are considered equivalent
if one can be obtained from the other by a sequence of row interchanges, column
interchanges, row negations and column negations. Inequivalent matrices are
Hadamard-inequivalent, but the converse does not hold (see [7]); therefore our

results give lower bounds on the number of Hadamard-inequivalent matrices.
Unless otherwise specified, we follow the notation of [7].

2. Define A to be the incidence matrix of a symmetric balanced incomplete
block design with parameters (v, k, 1), where k > A, and write a;, a,,--+,a, for
the integral equivalence invariants of 4 and D for the canonical matrix of A.
We write n =k — 4.

We prove the following propositions:
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THEOREM 1. The first [log,v] + 1 invariants of A equal 1 and the last two

are n and nk(k,2)~*. If n is square-free the invariants are*

1 (v—1)/2 times
(k,2) once
n (v —3)/2 times

nk(k,2)~* once.

THEOREM 2. If the s consecutive invariants (s = 3) starting from a; are

equal, then the s — 2 consecutive invariants ending at a,,; are each equal to
na; .

We need the following lemma.

LemMMmA 1. Suppose L is a v X v matrix over a Euclidean domain E and y
is a member of E. Write 1, l,,+-+1, for the invariants of L and my,m,,---,m,
for the invariants of M =L + yJ. Then

li—l | m; i=2,3,"',l);
mi_.l | Ii i=2,3,"',v.

Proor. The typical i X i submatrix of M has the form X + yJ, where X is an
i x i submatrix of L. Write X for X with the jth column replaced by ye;. Then

(1) X +y|=|X| + 2 |X|+T
j=1

where T is a sum of determinants with two columns ye;, and so equals zero. Ex-
panding |X j| by its jth column we obtain y times a sum of determinants of
(i — 1) x (i ~ 1) submatrices of L. So /;_; divides each term on the right-hand
side of (1). Therefore

) Ly |m =230
Similarly, since L = M + (— y)J,
3) m;_, | ;.
The adjoint of 4 is
n I 4T — AJ)
[3,p.25], so B = kA" — JJ satisfies

* This canonical form was found in [3,5] for the case (k,2) = 1.
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AB = knl.

If P and Q are unimodular matrices such that PAQ = D, then
Q~'BP~'=knD"!

which is necessarily the canonical matrix of B with its entries in reverse order.
(It is diagonal, and each diagonal entry divides each earlier one.) So the invariants
b, by, b, of B satisfy

(4)1 biav_i+1 = kn.

The non-zero entries in B equal n or A, so b, is the greatest common divisor
(n,4) =(k,2), and

&) a, = nk(k,A)~*
The invariants of kAT are ka,,ka,, -, ka,, so from (1) and (2)
(6) ka,_(|b; 2ZiZw,
0] bii|ka;, 25iZv.
Suppose a; = a;.4 = *+ = a;4,—, Where s = 3. Then b,_;4; = b,_; =

= b,_;~g+2 = nka;,~1, by (4). From (6) and (7)
ka,—;|nka,~%,
nkai—l l kav—i—s+3’

and since

Ay—i—s+3 I Ay—;
equality must hold throughout, that is
Qy—i—s+3 = Qy—jmsta = " = Ay =NaA
which proves Theorem 2.

We know [7, Theorem 3] that A has at least [log,v]+ 1 invariants equal to 1.
Suppose v = 4. Then a, = a, = a; = 1, s0 a,_, =n. In the (all trivial) cases where
v < 4 this is also true. So we have the first part of Theorem 1; if n is square-free
the rest of Theorem 1 is easy to prove.

It is worth observing that the conditions derived here are certainly not suf-
ficient. For example, the Theorems would allow four possible invariant sequen-
ces for a (16,6,2) design: the first ¢ invariants equal 1, 16 — 2a equal 2, a — 1
equal 4 and one equals 12, where a = 5,6,7 and 8. The possible (16,6,2) designs
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are exhibited in [2], and on testing we find that only the casesa =6 and a =7
occur.

3. LeMMA 2. If there is a skew-Hadamard matrix of order n then there is a
skew-Hadamard matrix of order 2n with invariants

1 once

2 n — 1 times

n n—1 times
2n once.

Proor. The Theorem is easily proven when n = 1 or 2, so put n = 4m. Suppose
A is a skew-Hadamard matrix with canonical diagonal matrix D; suppose P and Q
are unimodular integral matrices such that

D = PAQ.
Then
Q 'A"P ' =nD"",

and nD~"' is the matrix D with the order of its entries reversed [5]. For conven-
ience write

D=Q1)®2C®“4m);

C is a diagonal integral matrix of order n — 2.
Consider the matrix

A A

K= (—AT AT)

which is skew-Hadamard of order 2n. K is equivalent to
P 0 A A 0 p-!
(Q'1 —Q—l) (—AT AT) (0 P‘l)
PAQ 0
- (Q“(A + 470 2Q‘1ATP'1)

G o)
~ \2f  2nD-?

using the fact that A + A 7= 2I. This last matrix is
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2C

[Av]

2n

Subtract twice row 1 from row n + 1; subtract column 2n from column n; then
we can reorder the columns and rows to obtain

1

2n

')
nC-1/,

Every entry of C divides in, so 4nC~"! is integral. So the second direct summand
is integrally equivalent to

(—I C) (ZC 0 ) —inC-* 1 nl 0)
0 I 21 nC-! ( I 0 )=(o 21
and the invariants of K are as required.

LEMMA 3. If there is an Hadamard matrix of order n = 8m, then there is
an Hadamard matrix of order 2n with at least 12m — 1 invariants divisible by 4.

ProorF. If 4 is Hadamard of order n and has canonical diagonal matrix D, then

n- ()

is Hadamard of order 2n and is equivalent to the diagonal matrix
D®2D.

Since n = 8m, the last 4m invariants of 4 are divisible by 4. Every entry of 2D
except the first is divisible by 4. So D @ 2D has at least 12m — 1 entries divisible
by 4. Even if D @ 2D is not in canonical form, it is easy to deduce that D @ 2D
(and consequently H) has at least 12m — 1 invariants divisible by 4.

THEOREM 3. If there is a skew-Hadamard matrix of order 8m then there
exists a pair of inequivalent Hadamard matrices of order 16m.
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Proor. Lemmas 2 and 3.

4. The restrictions in Section 1 imply that the invariants of an Hadamard

matrix of order 32 are
1 once
2 atimes
4 (15 — a) times
8 (15— a) times
16 atimes
32 once

and that 5 £a < 15. We shall say a matrix with the invariants shown is ‘“of
class @’’; we shall now construct Hadamard matrices of order 32 in all eleven
possible classes, thus proving

THEOREM 4. There are precisely eleven inequivalent Hadamard matrices of
order 32.

In Section 4 of [7] we calculated the invariants of some Hadamard matrices of
order a power of 2 by generating functions. In particular, if A4 is Hadamard of
order 16 with « invariants equal to 2 and if H, is Hadamard of order 2, the

direct product

A A
HzxA=(_A A)

has exactly w + 1 invariants equal to 2. So the existence of 16 x 16 Hadamard
matrices with 4,5,6 and 7 invariants equal to 2 (exhibited in [7]) implies the
existence of 32 x 32 Hadamard matrices of classes 5,6,7 and 8. There is a skew-
Hadamard matrix of order 16, so by Lemma 2 class 15 exists.

An Hadamard matrix of order 16 can be constructed from a symmetric balanced
incomplete block design with parameters (15,7,3): first construct a matrix with
(i,j) entries 1 if treatment j belongs to block i and — 1 elsewhere; then add ona
first row and column with every entry 1. The (15,7, 3)-designs have been found
by Nandi [4], and are also listed in [1]. Write 4 for the 16 x 16 Hadamard
matrix constructed from Nandi’s design (a,a3), and B for the matrix con-
structed from Nandi’s (a,a;), after applying a permutation = to the blocks.
Then consider the matrix
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A B
"= (—A B) :
It is found that
when = (1) H is of class 9,
when 7 =(1,3) H is of class 10,
when ©=(1,3,4) H is of class 11,
when n =(2,7,12,13) H is of class 12,
when = =(3,4,5,6,7) H is of class 13,

when ©=(2,3,4,5,6,7) H is of class 14.

Therefore, examples of all classes can be found. (These results were found in a
computer test of various 32 x 32 Hadamard matrices).

It should be observed that these results could be used to strengthen the lower
bounds found in [7] on the number of inequivalent Hadamard matrices of order a
power of 2.
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